[原创]hdu 2588 GCD [欧拉函数]【数论】*
2016-08-11 11:48:04 Tabris_ 阅读数:345
博客爬取于 2020-06-14 22:43:55
以下为正文
版权声明:本文为 Tabris 原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/52181264
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2588
-------------------------.
GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1700 Accepted Submission(s): 829
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
-------------------------.
题目大意 : 不解释
题解:
首先明确的是,要求的\gcd(x,N) |N成立
那么我们只要知道\gcd结果为 N 的每一个约数时的个数就行了,
当[d|N]成立,那么就是求\gcd(N,x)=d的个数,\\显然只\gcd(N,d)=d,当且仅当\gcd(N,d*z)=d
gcd(a,b)>=c 可以转化成 gcd(a/c,b/c)=1;
那么\gcd(N/d,d*z/d)=1 \\ \gcd(N/d,z)=1
那么就是 求小于N/d的与N/d互质的数的个数即可,也就是欧拉函数
最后答案就是\sum_{d|n,d>=m}\phi(d)
题目所求的欧拉函数也同理
最后 O(sqrt(n)^(3/2))可解决
附本题代码
-----------------------.
1 | # include <stdio.h> |


